Monday, November 30, 2009
Escoriações - 10ª parte
7 – Peças mal ajustadas
A – Folga insuficiente entre pistão e cilindros
Este tipo de anomalia pode causar engripamento e escoriações em um motor pelo rompimento do filme de óleo quando o pistão se dilata.
Constata-s essa condição geralmente por uma área brilhante e polida, acima ou abaixo dos furos do pino (nos pistões de saia interiça) e escoriações nas faces de contato.
B – Muita interferência no pino do pistão
Um ajuste apertado no pino do pistão impede que o pistão se expanda e contraia normalmente, daí resultando folgas insuficientes.
Por isso, quando um pino for instalado sem folga suficiente no furo do pistão ou na bucha da biela, normalmente deverão ser encontradas riscos ou escoriações unicamente nos lados do pistão onde estão os furos dos pinos devendo encontrar-se escoriações e rebarbas nos furos dos pinos.
Escoriações causadas por um pino instalado muito apertado
C - Anéis com folga insuficiente entre pontas.
Os pistões e os anéis se dilatam à medida em que se aquecem atingindo a temperatura de operação do motor.
Por isso, conforme já mencionado anteriormente em “Troca de anéis”, é importante que todos os anéis tenham pelo menos o limite mínimo especificado de folga entre pontas, pois, em caso contrário, as extremidades dos anéis podem encostar-se e causar escoriação, quebra dos anéis ou engripamento do motor.
Uma folga entre pontas inferior ao mínimo especificado pode, por exemplo, ser devida ao fato de estar o cilindro com 0,025 mm (0.001”) menor que a medida prevista, ou pelo fato de usar-se u jogo de anéis incorreto para este motor.
D – Ajuste inadequado das camisas de cilindro
Muitos fabricantes de motores para serviços pesados, fabricam os motores com camisas substituíveis em lugar de cilindros fundidos com o bloco, exibindo dois tipos de camisas: secas e molhadas, como já foi mencionado anteriormente.
O ajuste de camisas secas em um cilindro retificado tem grande influencia na durabilidade e no desempenho dos pistões e anéis de segmento e considerando este fato, os fabricantes despenderam anos e anos, provando e desenvolvendo o ajuste certo das camisas para determinado motor.
Assim sendo, é de estrema importância que o ajuste dessas camisas no bloco seja o mais perfeito possível pois, caso contrario, fatalmente ocorrerão escoriações e engripamento.
Existem três maneiras de ajustar uma camisa incorretamente:
1 – Ajuste muito folgado.
2 – Ajuste muito apertado.
3 – Ajuste em cilindro deformado.
Um ajuste muito folgado da camisa reduz a transferência de calor desta para o bloco, deixando-a superaquecida pelo calor que recebe dos anéis e dos próprios gases da combustão.
Uma combinação dessa situação com a realização de serviços pesados, pode provocar a ruptura do filme de óleo lubrificante e causar escoriações no motor.
Por outro lado, quando se instala uma camisa com muita interferência, além de o próprio bloco poder ficar deformado, o que pode ocorrer é que, como o calor gerado pelo funcionamento do motor faz com que a camisa se dilate, e não existindo condições para que ela se dilate para fora devido à excessiva interferência com o bloco, a camisa acaba se dilatando para dentro, diminuindo de diâmetro.
Com isso, a folga entre camisa e pistão chega a reduzir-se a zero, rompendo o filme de óleo e provocando escoriações e engripamento.
Além disso, dependendo do caso, essa diminuição do diâmetro interno da camisa pode tornar-se permanente.
Quando o motor estiver frio, em determinados pontos, ficará um vazio entre a camisa e o bloco, onde vão se acumular carvão e resina, que irão prejudicar a transferência de calor no local e tornar-se novos pontos de superaquecimento e escoriações.
Quanto à instalação de camisas em cilindros deformados, o que poderá ocorrer é que: ou a camisa se moldará à deformação do cilindro, ficando também deformada e dificultando o assentamento dos anéis, ou não se deformará, formando, no entanto, um contato irregular com as paredes do cilindro, deixando vãos onde se acumularão carvão e resina, causando os problemas descritos anteriormente.
Grandes depósitos de carvão ou resina na parte externa das camisas, sinais de escoriações ou engripamento nos anéis e/ou nas camisas o pontos brilhantes e polidos, evidenciam a deformação ou o esmagamento da camisa devido a irregularidade no cilindro.
E – Desalinhamento de Bielas
Quando as bielas estão desalinhadas, os anéis não tem uma superfície de contato adequada com a parede do cilindro, os pistões se desgastam de forma desigual, o consumo de óleo é anormal e o motor tem maior tendência para engripamento e escoriações.
Identifica-se uma biela desalinhada pelo desgaste irregular do pistão, no sentido diagonal, em pontos opostos, conforme mostra a figura abaixo.
Pistões com desgaste em diagonal
O contato com a parede do cilindro aparece na parte inferior da saia, à esquerda e, na área dos anéis, à direita. Verifica-se, também, um sinal de desgaste, começando à direita na parte superior, descendo em forma diagonal e prolongando-se transversalmente para a esquerda e na parte de baixo da saia.
Portanto, verifique sempre o alinhamento das bielas antes de substituir os anéis, a fim de evitar os problemas acima.
F – Perda da trava do pino
Embora de natureza diferente da escoriação e engripamento como descrito até o momento este é um problema relativamente comum e que e que também provoca riscos e quebras dos anéis, pistões e cilindros.
A avaria do pistão do tipo ilustrado na figura abaixo é devida ao afrouxamento da trava do pino, à quebra da extremidade da trava do pino, ou a um pedaço de metal solto, deixado no interior do pino.
A avaria neste pistão foi causada pela perda da trava do pino.
Em casos desse tipo, devido à inércia, o objeto solto martela o pistão e o cilindro na área do cubo do pino, danificando o pistão enquanto procura sua saída do motor.
Além disso, esses objetes soltos podem passar através do oco do pino, danificando o pistão e a parede do cilindro no lado opostos.
As travas dos pinos podem soltar-se devido a:
1 – Desalinhamento das bielas.
2 – Excessivo jogo axial do virabrequim.
3 – Pinos do pistão muito longos.
4 – Conicidade dos colos do virabrequim.
5 – Cilindro retificado fora de alinhamento.
6 – Pedaços de metal deixando dentro do pino do pistão.
7 – Travas de pinos frouxas.
8 – Uso de trava de pino incorreta.
9 – Travas de pino instalados incorretamente.
Sunday, November 29, 2009
Friday, November 27, 2009
Novo CrossFox por R$ 45.550
Ele vem de série com direção hidráulica sistema i-System, computador de bordo, direção com regulagem de altura e profundidade além dos vidros e travas elétricas.
Thursday, November 26, 2009
Mercedes-Benz W212 E-Class launched in Malaysia
Novo CrossFox 2010
O Novo CrossFox 2010 chega as concessionárias a partir de dezembro. A carinha é a mesma do novo Fox, com os faróis que lembram o Polo europeu.
As modificações no visual tiraram um pouco do fora de estrada deixando-o com um visual mais limpo. Ele não tem o quebra mato dianteiro e o suporte do estepe fica mais escondido. A abertura do porta-malas é automática que é feita após a abertura completa do suporte.
Ele traz de série direção hidráulica, ar-condicionado, vidros e travas elétricas, setas de direção integradas nos retrovisores externos além da regulagem de altura e profundidade do volante. As rodas são de 15 polegadas feitas em aço os rodas de liga são opcionais.
Clique nas fotos para ampliar
Fonte
Wednesday, November 25, 2009
Revelada Strada Sporting 2010
Ela vem com rodas de liga 16 polegadas, spoilers e farol com mascara negra. No interior traz volante de couro com costuras em vermelho, cintos vermelhos e protetores esportivos nos pedais.
Vem com motor 1.8 Flex de 113 cv abastecido com gasolina e 115 cv quando abastecido com álcool.
Estas são as duas fotos disponibilizadas e a Fiat não divulgou ainda valores.
Sunday, November 22, 2009
Friday, November 20, 2009
Thursday, November 19, 2009
Wednesday, November 18, 2009
2010 Hyundai Sonata 2.4 to have 201ps/250Nm GDI engine
To help meet its goals of environmental leadership, Hyundai Motor Company unveiled the 2.4 Theta II GDI, its first Gasoline Direct Injection engine before an audience of engineers attending the Ninth Annual Hyundai-Kia International Powertrain Conference.
Representing the biggest advancement in fuel injection, an ‘80s technology that replaced the carburetor, GDI puts Hyundai at the cutting edge of engine design and management by achieving three seemly incompatible goals: GDI lowers emissions while raising power output and improving fuel economy. Prior to GDI, a gain in one area came at the expense of the other two.
With a compression ratio of 11.3:1, the 2.4 Theta II GDI delivers 201ps at 6300rpm and 250 Nm of torque at 4250 rpm in its Korean domestic market specification.
“The Theta II GDI convincingly demonstrates Hyundai’s advanced powertrain engineering capabilities,” said Dr. Lee Hyun-Soon, Vice Chairman and Chief Technology Officer.
One serious limitation of conventional fuel injection is that as engine revolutions increase, the valve opening and closing times get progressively shorter, thus reducing the time available to inject fuel. GDI avoids this problem altogether by positioning the fuel injector in the most optimal location, directly inside the combustion chamber to offer unparalleled precision. With this shorter and more direct path, far greater control is attained over the combustion process: A high pressure fuel pump injects the fuel at pressures of up to 150 bar, in precise amounts and intervals.
The injection is split into two phases to achieve optimum combustion: in the first phase, the pilot injection and ignition trigger the piston's downward power stroke. Then, in the main injection phase, during the piston's descent, more fuel is injected and is ignited. This split-injection technique reduces loading on the catalytic converter and helps lower emissions. This is particularly beneficial during cold starts when emissions are highest because the catalyst has not reached its optimal operating temperature. Split-injection enables the catalytic converter to reach the optimal operating temperature faster thus reducing emissions by 25 percent during cold starts and meet’s California Air Resources Board’s ULEV-2 and PZEV standards.
GDI’s other benefits include improved dynamic performance and better mileage. Compared to a conventional engine of the same displacement, GDI delivers 7 percent more torque at low revolutions and 12 percent more torque at the high-end for better take-off and overtaking performance. Perhaps best of all, a vehicle equipped with a GDI engine will get about 10 percent better mileage than a vehicle equipped with a conventional multi-point fuel injected engine. Precise mileage figures will be announced when retail sales begin.
GDI has been applied to the second generation of Theta: Theta II features numerous design enhancements over its predecessor starting with the application of a three-stage variable induction system (VIS) which improves engine "breathing," automatically adjusting the volume of the air sucked into the combustion chamber to create the optimal air-to-fuel mix under different engine load conditions.
Further performance gains were made possible by incorporating Dual Continuously Variable Valve Timing (DCVVT) which improves engine breathing on the intake and exhaust sides for better fuel economy and lower emissions. Depending on engine load and speed, DCVVT can extend or shorten the duration of the valve opening and closing for more power and lower emissions. And the DCVVT system is governed by a new steel chain with an innovative roller and tooth designed for silent operation and durability.
While DCVVT and VIS improve power output, engineers have also come up with several important weight saving innovations. Special attention was focused on the bulkhead, the area of the aluminium cylinder block accumulating the highest stresses: Reinforcement yielded a stiffer block without incurring a weight penalty. A redesign of the crankshaft (semi-eight-balance type) led to an equally important weight reduction. The catalytic converter is also lighter thanks to a new canning process which allows for the use of thinner gauge stainless steel and requiring far less welding.
Another major engineering challenge was to reduce internal friction to attain better fuel economy. Friction reduction measures include a revision of the piston pin from a fixed-type to a full-floating design which cuts down on friction between the piston and cylinder wall. And under the piston crown, engineers have added a cooling jet which sprays oil over the piston walls reducing friction and contributing to an improvement in fuel economy.
Monday, November 16, 2009
Ferrari Califórnia na mão de um “abobado”
Sunday, November 15, 2009
Friday, November 13, 2009
Thursday, November 12, 2009
Andropause Rx: A Porsche to restore low testosterone?
Scientists have conducted a rather interesting study, according to an article posted at Zeintec (Zei-News) online newsletter.
A group of men were first given ownership (for a full hour) of a £75,000 Porsche 911 Carrera Cabriolet, followed by ownership (for a full hour) of a sixteen year old Toyota Camry, which definitely fell into the ‘beaten-up-family-car’ category.
Before the drive began in the Porsche, tests were conducted on saliva samples from each man and a testosterone level was noted. After the men took a drive through the country side, alone in the car with no witnesses, there was a significant increase in these levels! To take it a step further, the levels increased even MORE when the man drove through a town or city where there were plenty of female onlookers to fluff their tail feathers for.
BUT when the man took an hour drive in the Toyota, there was no increase in their testosterone levels and sadly, some men even showed a slight decrease!
For a man, owning a Porsche would be the equivalent of having the brightest feathers amongst your peacock rivals! It is common knowledge that a low testosterone level in a man can lead to a decrease in health; bad moods, sleep difficulty, putting on weight and a low sex drive...So the conclusion we come to: driving a Porsche is great for your health!
Recall do Nissan Sentra 2008
De acordo com a montadora, o equipamento pode apresentar vazamento de fluído, que é informado ao condutor por meio de uma luz no painel. Caso o veículo continue sendo utilizado nestas condições, haverá um aumento no curso do pedal de freio e, consequente, a perda progressiva da capacidade de frenagem.
A inspeção leva aproximadamente uma hora e pode ser agendada em qualquer uma das revendas da marca. Caso a substituição da peça seja necessária, o reparo leva cerca de duas horas e não tem custo para o cliente.
Para maiores informações, a Nissan disponibiliza o telefone 0800 011 1090 ou o site oficial da empresa.
Confira os números dos chassis envolvidos no reparo:
Nissan Sentra (fabricados entre 23 de fevereiro e 18 de abril de 2008)
3N1AB61D28L703250 a 3N1AB61D68L705261
3N1AB61E99L600000 a 3N1AB61D09L602144
Perodua Viva Elite
Today I shall get down-to-earth, back-to-basics with this car review. No other car epitomize this better than Perodua Viva Elite. It is by no means bargain-basement cheap, considering that Perodua is considered a national car maker and is afforded tariff exemption, special tax incentives et al.
Not paying much attention to this Perodua model initially, I was surprised at how decent this rebadged Daihatsu Charade (of previous generation) can be. Things that matter like ABS, twin SRS airbags are there. Even the wing mirrors are electrically foldfable. Hear this UMW Toyota: (well, they are of the same core business group anyway), where's the electric folding mirror action for the RM175k Toyota Prius?
Then there's also adjustable seatbelt anchorage points on the B-Pillars. Similar items in Toyota Avanza and even Nissan Grand Livina? No.
Though the seats are not the last word in comfort - its flanks support and backrest are a little thin/stingy but the thigh supports are surprisingly adequate (at least for my short stature) i.e. ant-posterior length-wise up to the mark. Once again, even the ever popular (D-segment!) Toyota Camry is a little shortchanged here. Serious.
Drive wise, there is nothing much to complain about. It's sprightly enough, light footed and willing on the move. There's even 4 -speed auto now, versus the Kancil 850 EZ which my better half owned 8 years ago. Idling vibrations is still noticeable, even though idling engine speed is pretty high at 1000rpm. The instruments panel are simple, clean and easily legible. something that the other 'major' national carmaker needs to learn for its Neo model or even its new Evora...er, I meant Exora.
The chassis gets a tad floaty as you breach our national highway speed limit but I guess flogging it to, say 130 km/h is much akin to wearing your Croc sandals to do snorkeling.
Funnily, the alloy wheels managed to look like wheel caps, which is something rather 'bizarre' considering that some good wheel caps can mimic otherwise these days!
In contention for a NST-Maybank COTY award 2009, whether the Viva Elite will present better value than the Hyundai i10 remains with the end-user. While the little Hyundai does handle better and has a better interior, the Viva's trump cards are its features.
At the end of the day, most motorists at this entry-level budget segment will likely emphasise on Viva's resale value in the future as a key consideration factor in their purchase.
Or perhaps another choice may be the newly relaunched, facelifted and renamed Naza (Kia) Picanto?